Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 469: 133931, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38447369

RESUMO

Cadmium (Cd) pollution is on the rise due to rapid urbanization, which emphasize the potential adverse effects on plant biodiversity and human health. Wedelia as a dominant invasive species, is tested for its tolerance to Cd-toxicity and herbivore infestation. We investigate defense mechanism system of invasive Wedelia trilobata and its native congener Wedelia chinensis against the Cd-pollution and Spodoptera litura infestation. We found that Cd-toxicity significantly increase hydrogen peroxide (H2O2), Malondialdehyde (MDA) and hydroxyl ions (O2•) in W. chinensis 20.61%, 4.78% and 15.68% in leave and 27.44%, 25.52% and 30.88% in root, respectively. The photosynthetic pigments (Chla, Chla and Caro) and chlorophyll florescence (Fo and Fv/Fm) declined by (60.23%, 58.48% and 51.96%), and (73.29% and 55.75%) respectively in W. chinensis and (44.76%, 44.24% and 44.30%), and (54.66% and 45.36%) in W. trilobata under Cd treatment and S. litura. Invasive W. trilobata had higher enzymatic antioxidant SOD 126.9/71.64%, POD 97.24/94.92%, CAT 53.99/25.62% and APX 82.79/50.19%, and nonenzymatic antioxidant ASA 10.47/16.87%, DHA 15.07/27.88%, GSH 15.91/10.03% and GSSG 13.56/17.93% activity in leaf/root, respectively. Overall, W. trilobata accumulate higher Cd content 55.41%, 50.61% and 13.95% in root, shoot and leaf tissues respectively, than its native congener W. chinensis. While, nutrient profile of W. chinensis reveals less uptake of Fe, Cu and Zn than W. trilobata. W. trilobata showed efficient alleviation of oxidative damage through upregulating the genes related to key defense such as SOD, POD, CAT, APX, GR, PROL, FLV, ABA and JAZ, and metal transporter in leaves, shoot and root tissues, respectively. Conclusively, W. trilobata efficiently employed Cd-triggered defense for successful invasion, even under S. litura infestation, in Cd-contaminated soil.


Assuntos
Wedelia , Humanos , Wedelia/fisiologia , Cádmio/toxicidade , Antioxidantes/farmacologia , Herbivoria , Peróxido de Hidrogênio/farmacologia , Superóxido Dismutase
2.
Sci Total Environ ; 900: 165832, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37524179

RESUMO

Plants exposed to a variety of abiotic and biotic stressors including environmental pollution and global warming pose significant threats to biodiversity and ecosystem services. Despite substantial literature documenting how plants adapt to distinct stressors, there still is a lack of knowledge regarding responses to multiple stressors and how these affects growth and development. Exposure of plants to concurrent biotic and abiotic stressors such as cadmium and drought, leads to pronounced inhibition in above ground biomass, imbalance in oxidative homeostasis, nutrient assimilation and stunted root growth, elucidating the synergistic interactions of multiple stressors culminating in adverse physiological outcomes. Impact of elevated heavy metal and water deficit exposure extends beyond growth and development, influencing the biodiversity of the microenvironment including the rhizosphere nutrient profile and microbiome. These findings have significant implications for plant-stress interactions and ecosystem functioning that prompt immediate action in order to eliminate effect of pollution and address global environmental issues to promote sustainable tolerance for multiple stress combinations in plants. Here, we review plant tolerance against stress combinations, highlighting the need for interdisciplinary approaches and advanced technologies, such as omics and molecular tools, to achieve a comprehensive understanding of underlying stress tolerance mechanisms. To accelerate progress towards developing stress-tolerance in plants against multiple environmental stressors, future research in plant stress tolerance should adopt a collaborative approach, involving researchers from multiple disciplines with diverse expertise and resources.


Assuntos
Ecossistema , Estresse Fisiológico , Plantas , Rizosfera , Biodiversidade
3.
Microb Cell Fact ; 22(1): 88, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37127628

RESUMO

Acetic acid and furfural (AF) are two major inhibitors of microorganisms during lignocellulosic ethanol production. In our previous study, we successfully engineered Zymomonas mobilis 532 (ZM532) strain by genome shuffling, but the molecular mechanisms of tolerance to inhibitors were still unknown. Therefore, this study investigated the responses of ZM532 and its wild-type Z. mobilis (ZM4) to AF using multi-omics approaches (transcriptomics, genomics, and label free quantitative proteomics). Based on RNA-Seq data, two differentially expressed genes, ZMO_RS02740 (up-regulated) and ZMO_RS06525 (down-regulated) were knocked out and over-expressed through CRISPR-Cas technology to investigate their roles in AF tolerance. Overall, we identified 1865 and 14 novel DEGs in ZM532 and wild-type ZM4. In contrast, 1532 proteins were identified in ZM532 and wild-type ZM4. Among these, we found 96 important genes in ZM532 involving acid resistance mechanisms and survival rates against stressors. Furthermore, our knockout results demonstrated that growth activity and glucose consumption of mutant strains ZM532∆ZMO_RS02740 and ZM4∆ZMO_RS02740 decreased with increased fermentation time from 42 to 55 h and ethanol production up to 58% in ZM532 than that in ZM532∆ZMO_RS02740. Hence, these findings suggest ZMO_RS02740 as a protective strategy for ZM ethanol production under stressful conditions.


Assuntos
Ácido Acético , Zymomonas , Ácido Acético/metabolismo , Zymomonas/genética , Furaldeído/metabolismo , Embaralhamento de DNA , Fermentação , Etanol/metabolismo
4.
Insects ; 13(11)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36354841

RESUMO

The oriental fruit fly is a polyphagous and highly invasive economically important pest in the world. We proposed the hypothesis that radiation treatment influence RNA expression in the larvae and leads to emergence failure. Therefore, transcriptome analyses of third-instar larvae of B. dorsalis ionizing, irradiated with 60Co-γ at 116Gy, were conducted and compared with the controls; a total of 608 DEGs were identified, including 348 up-regulated genes and 260 down-regulated ones. In addition, 130 SNPs in 125 unigenes were identified. For the DEGs, the most significantly enriched GO item was hemolymph coagulation, and some of the enriched pathways were involved in digestive processes. The subsequent validation experiment confirmed the differential expression of six genes, including sqd, ENPEP, Jhe, mth, Notch, and Ugt. Additionally, the 3401:G->A SNP in the Notch gene was also successfully validated. According to previous research, this was the first comparative transcriptome study to discover the candidate genes involved in insect molt to pupae. These results not only deepen our understanding of the emerging mechanism of B. dorsalis but also provide new insights into the research of biomarkers for quarantine insect treatment with the appropriate dose of radiation.

6.
Front Vet Sci ; 9: 875629, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711790

RESUMO

Burns cause many significant changes in metabolism and inflammatory reactions, leading to poor regeneration in animals and humans. A list of medicines to treat burns is available in the market. But due to the high cost of these medicines, these are unaffordable, especially for farmers of middle-class families of Africa and Asia. Therefore, a low-cost complementary treatment has always been a topic of many researchers, and there is a dire need of time for the welfare of animals to save them. The current study was planned to scrutinize the therapeutic effects of Manuka honey and Nitrofurazone ointments on full-thickness burn wounds in the rabbit model. The healing efficacy was performed through wound contraction rate, hematological analysis, the thickness of dermis and epidermis, and collagen content percentage. Histopathology was performed after taking biopsy samples at the end of the research. Based on statistical analysis using wound healing time (days, D), the combination (MO + NT) resulted in a shorter period (27 D ± 1) than the average healing time of controlled (36 ± 2), Manuka ointment (31.33 D ± 1.52), and Nitrofurazone ointment (32 ± 1). A significant decrease in the count of red blood cell (RBC), mean corpuscular volume (MCV), and mean corpuscular hemoglobin (MCH) in all treatments was noticed mainly in MO + NT. Furthermore, burns induced a significant difference (p < 0.05) in the white blood cells (WBCs) count levels in the MO-treated group. While the level of platelets (PLTs) was not significantly different from the healthy control group. Histopathological assessment (epithelialization, fibrosis, and angiogenesis) of skin showed burn healing to be better in MO and MO + NT groups. In conclusion, the composite of Manuka honey with Nitrofurazone led to the faster recovery than other treatments.

7.
Biotechnol Biofuels ; 14(1): 221, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34823583

RESUMO

BACKGROUND: As one of the clean and sustainable energies, lignocellulosic ethanol has achieved much attention around the world. The production of lignocellulosic ethanol does not compete with people for food, while the consumption of ethanol could contribute to the carbon dioxide emission reduction. However, the simultaneous transformation of glucose and xylose to ethanol is one of the key technologies for attaining cost-efficient lignocellulosic ethanol production at an industrial scale. Genetic modification of strains and constructing consortia were two approaches to resolve this issue. Compared with strain improvement, the synergistic interaction of consortia in metabolic pathways should be more useful than using each one separately. RESULTS: In this study, the consortia consisting of suspended Scheffersomyces stipitis CICC1960 and Zymomonas mobilis 8b were cultivated to successfully depress carbon catabolite repression (CCR) in artificially simulated 80G40XRM. With this strategy, a 5.52% more xylose consumption and a 6.52% higher ethanol titer were achieved by the consortium, in which the inoculation ratio between S. stipitis and Z. mobilis was 1:3, compared with the Z. mobilis 8b mono-fermentation. Subsequently, one copy of the xylose metabolic genes was inserted into the Z. mobilis 8b genome to construct Z. mobilis FR2, leading to the xylose final-consumption amount and ethanol titer improvement by 15.36% and 6.81%, respectively. Finally, various corn stover hydrolysates with different sugar concentrations (glucose and xylose 60, 90, 120 g/L), were used to evaluate the fermentation performance of the consortium consisting of S. stipitis CICC1960 and Z. mobilis FR2. Fermentation results showed that a 1.56-4.59% higher ethanol titer was achieved by the consortium compared with the Z. mobilis FR2 mono-fermentation, and a 46.12-102.14% higher ethanol titer was observed in the consortium fermentation when compared with the S. stipitis CICC1960 mono-fermentation. Furthermore, qRT-PCR analysis of xylose/glucose transporter and other genes responsible for CCR explained the reason why the initial ratio inoculation of 1:3 in artificially simulated 80G40XRM had the best fermentation performance in the consortium. CONCLUSIONS: The fermentation strategy used in this study, i.e., using a genetically modified consortium, had a superior performance in ethanol production, as compared with the S. stipitis CICC1960 mono-fermentation and the Z. mobilis FR2 mono-fermentation alone. This result showed that this strategy has potential for future lignocellulosic ethanol production.

8.
Sci Rep ; 11(1): 5865, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712687

RESUMO

Ovary development is an important determinant of the procreative capacity of female animals. Here, we performed genome-wide sequencing of long non-coding RNAs (lncRNAs) and mRNAs on ovaries of 1, 3 and 8 months old Hu sheep to assess their expression profiles and roles in ovarian development. We identified 37,309 lncRNAs, 45,404 messenger RNAs (mRNAs) and 330 novel micro RNAs (miRNAs) from the transcriptomic analysis. Six thousand, seven hundred and sixteen (6716) mRNAs and 1972 lncRNAs were significantly and differentially expressed in ovaries of 1 month and 3 months old Hu sheep (H1 vs H3). These mRNAs and target genes of lncRNAs were primarily enriched in the TGF-ß and PI3K-Akt signalling pathways which are closely associated with ovarian follicular development and steroid hormone biosynthesis regulation. We identified MSTRG.162061.1, MSTRG.222844.7, MSTRG.335777.1, MSTRG.334059.16, MSTRG.188947.6 and MSTRG.24344.3 as vital genes in ovary development by regulating CTNNB1, CCNA2, CDK2, CDC20, CDK1 and EGFR expressions. A total of 2903 mRNAs and 636 lncRNAs were differentially expressed in 3 and 8 months old ovaries of Hu sheep (H3 vs H8); and were predominantly enriched in PI3K-Akt, progesterone-mediated oocyte maturation, estrogen metabolism, ovulation from the ovarian follicle and oogenesis pathways. These lncRNAs were also found to regulate FGF7, PRLR, PTK2, AMH and INHBA expressions during follicular development. Our result indicates the identified genes participate in the development of the final stages of follicles and ovary development in Hu sheep.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genoma , MicroRNAs/genética , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , RNA Longo não Codificante/genética , Ovinos/genética , Animais , Feminino , Ontologia Genética , Redes Reguladoras de Genes , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes
9.
Bionanoscience ; 11(2): 621-632, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33520589

RESUMO

Titanium dioxide nanoparticles (TiO2 NPs) are the most produced nanomaterial for food additives, pigments, photocatalysis, and personal care products. These nanomaterials are at the forefront of rapidly developing indispensable nanotechnology. In all these nanomaterials, titanium dioxide (TiO2) is the most common nanomaterial which is being synthesized for many years. These nanoparticles of TiO2 are widely used at the commercial level, especially in cosmetic industries. High usage in such a way has increased the toxicological consequences of the human population. Several studies have shown that TiO2 NPs accumulated after oral exposure or inhalation in the alimentary canal, lungs, heart, liver, spleen, cardiac muscle, and kidneys. Additionally, in mice and rats, they disturb glucose and lipid homeostasis. Moreover, TiO2 nanoparticles primarily cause adverse reactions by inducing oxidative stress that leads to cell damage, inflammation, genotoxicity, and adverse immune responses. The form and level of destruction are strongly based on the physical and chemical properties of TiO2 nanoparticles, which administer their reactivity and bioavailability. Studies give indications that TiO2 NPs cause both DNA strand breaks and chromosomal damages. The effects of genotoxicity do not depend only on particle surface changes, size, and exposure route, but also relies on the duration of exposure. Most of these effects may be because of a very high dose of TiO2 NPs. Despite increased production and use, epidemiological data for TiO2 NPs is still missing. This review discusses previous research regarding the impact of TiO2 NP toxicity on human health and highlights areas that require further understanding in concern of jeopardy to the human population. This review is important to point out areas where extensive research is needed; thus, their possible impact on individual health should be investigated in more details.

10.
BMC Plant Biol ; 21(1): 71, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33530948

RESUMO

BACKGROUND: Carpet grass [Axonopus compressus (L.)] is an important warm-season perennial grass around the world and is known for its adaptability to varied environmental conditions. However, Carpet grass lacks enough data in public data banks, which confined our comprehension of the mechanisms of environmental adaptations, gene discovery, and development of molecular markers. In current study, the DEGs (differentially expressed genes) in Axonopus compressus under drought stress (DS) were identified and compared with CK (control) by RNA-Seq. RESULTS: A total of 263,835 unigenes were identified in Axonopus compressus, and 201,303 (also added to the numbers of the remaining 2 databases) a sequence of unigenes significantly matched in at least one of the seven databases. A total of 153,697 (58.25%) unigenes classified to 144 KEGG pathways, and 7444 unigenes were expressed differentially between DS and CK, of which 4249 were up-regulated and 3195 were down-regulated unigenes. Of the 50 significantly enriched GO terms, 18, 6, and 14 items were related to BP, CC, and MF respectively. Analysis of KEGG enrichment revealed 2569 DEGs involved in 143 different pathways, under drought stress. 2747 DEGs were up-regulated and 2502 DEGs were down-regulated. Moreover, we identified 352 transcription factors (TFs) in Axonopus compressus, of which 270 were differentially expressed between CK and DS. The qRT-PCR validation experiment also supports the transcriptional response of Axonopus compressus against drought. Accuracy of transcriptome unigenes of Axonopus compressus was assessed with BLAST, which showed 3300 sequences of Axonopus compressus in the NCBI. CONCLUSION: The 7444 unigenes were found to be between DS and CK treatments, which indicate the existence of a strong mechanism of drought tolerance in Axonopus compressus. The current findings provide the first framework for further investigations for the particular roles of these unigenes in Axonopus compressus in response to drought.


Assuntos
Adaptação Fisiológica/genética , Secas , Poaceae/genética , Poaceae/fisiologia , Transcrição Gênica , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genes de Plantas , Redes e Vias Metabólicas , Anotação de Sequência Molecular , Estresse Fisiológico/genética , Fatores de Transcrição/metabolismo
12.
Biol Trace Elem Res ; 182(1): 57-69, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28631137

RESUMO

This study assessed the protective effects of Cinnamomum cassia (cinnamon) bark extract in rats exposed to titanium dioxide nanoparticles or titanium dioxide bulk salt. For in vivo evaluation of the ameliorative role of the cinnamon extract, the experimental groups were orally administered with the cinnamon extract at different dose levels (50 or 100 or 150 mg/kg bodyweight) along with the subcutaneous injections of 150 mg/kg bodyweight titanium dioxide nanoparticles or titanium dioxide bulk salt. The extract showed significant ameliorative role on the antioxidant system in response to elevated levels of titanium dioxide nanoparticles or titanium dioxide bulk salt-induced oxidative stress. It aided in the recovery of the antioxidant system as well as protective role in histological damages and some haematological parameters in the rat liver treated with titanium dioxide nanoparticles or titanium dioxide bulk salt.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Cinnamomum aromaticum/química , Fígado/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Extratos Vegetais/farmacologia , Titânio/toxicidade , Animais , Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Dano ao DNA , Relação Dose-Resposta a Droga , Fígado/metabolismo , Fígado/patologia , Masculino , Fitoterapia/métodos , Casca de Planta/química , Extratos Vegetais/administração & dosagem , Substâncias Protetoras/farmacologia , Ratos Sprague-Dawley
13.
J Coll Physicians Surg Pak ; 26(7): 585-8, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27504550

RESUMO

OBJECTIVE: To determine the pattern of polymicrobial isolates in blood cultures and antimicrobial susceptibility in a tertiary care hospital of Karachi. STUDY DESIGN: Cross-sectional study. PLACE AND DURATION OF STUDY: Sindh Institute of Urology and Transplantation (SIUT), Karachi, Pakistan, from September to November 2014. METHODOLOGY: Blood culture samples were received from patients, which were processed by BACTEC 9240 system (Becton Dickinson). All positive blood samples were further analyzed. Susceptibility to antimicrobial agents was determined according to the Clinical and Laboratory Standards Institute (CLSI) criteria of the year. Identification of growth was based on Gram staining, colony morphology and appropriate biochemical tests. Antibiotic susceptibility was done as per Clinical and Laboratory Standards Institute (CLSI) recommendations. RESULTS: Out of the 7251 samples submitted, 2931 (40.42%) were positive for growth, 2389 (81.5%) samples were monomicrobial, whereas 542 (18.5%) samples were polymicrobial. Among the polymicrobial isolates, 468 (86.34%) blood culture samples yielded two, 66 (12.17%) yielded three, and 8 (1.47%) yielded four organisms. Gram positive isolates were 281 (51.84%) and Gram negative were 261 (48.15%). The most frequent isolates in polymicrobial blood stream infection were Acinetobacterspp. (51/542, 9.4%) and Coagulase negative Staphylococcus(84/542, 15.5%), respectively. Staphylococcus aureus isolates, which were resistant to Methicillin, accounted for 24.65%. Third generation Cephalosporins resistance in Klebsiella spp. and Eschericia (E.) coli was found to be 63.6% and 58%, respectively. Carbapenem resistance was seen in 5.9% of Pseudomonas aeruginosaand 17.6% Acinetobacter spp. CONCLUSION: Gram positive bacteria were more commonly involved in polymicrobial blood stream infections with Coagulase negative Staphylococcusbeing the most common Gram positive isolate. Methicillin-resistant Staphylococcus aureusaccounted for one-fourth of isolates. Higher resistance to third generation Cephalosporins was seen in Klebsiella spp. and E.coli isolates. Resistance of Pseudomonas aeruginosaand Acinetobacter species to Carbapenems was found out to be on the lower side.


Assuntos
Antibacterianos/farmacologia , Bacteriemia/microbiologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/isolamento & purificação , Infecções por Bactérias Gram-Negativas/microbiologia , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/isolamento & purificação , Infecções por Bactérias Gram-Positivas/microbiologia , Acinetobacter/isolamento & purificação , Estudos Transversais , Farmacorresistência Bacteriana , Feminino , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/epidemiologia , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/epidemiologia , Humanos , Testes de Sensibilidade Microbiana , Paquistão/epidemiologia , Staphylococcus/isolamento & purificação
14.
Biol Trace Elem Res ; 172(1): 1-36, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26554951

RESUMO

Nano-titanium dioxide (TiO2) is one of the most commonly used materials being synthesized for use as one of the top five nanoparticles. Due to the extensive application of TiO2 nanoparticles and their inclusion in many commercial products, the increased exposure of human beings to nanoparticles is possible. This exposure could be routed via dermal penetration, inhalation and oral ingestion or intravenous injection. Therefore, regular evaluation of their potential toxicity and distribution in the bodies of exposed individuals is essential. Keeping in view the potential health hazards of TiO2 nanoparticles for humans, we reviewed the research articles about studies performed on rats or other mammals as animal models. Most of these studies utilized the dermal or skin and the pulmonary exposures as the primary routes of toxicity. It was interesting that only very few studies revealed that the TiO2 nanoparticles could penetrate through the skin and translocate to other tissues, while many other studies demonstrated that no penetration or translocation could happen through the skin. Conversely, the TiO2 nanoparticles that entered through the pulmonary route were translocated to the brain or the systemic circulation from where these reached other organs like the kidney, liver, etc. In most studies, TiO2 nanoparticles appeared to have caused oxidative stress, histopathological alterations, carcinogenesis, genotoxicity and immune disruption. Therefore, the use of such materials in humans must be either avoided or strictly managed to minimise risks for human health in various situations.


Assuntos
Nanopartículas/química , Titânio/efeitos adversos , Titânio/toxicidade , Humanos , Distribuição Tecidual , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...